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LETTER TO THE EDITOR 

Operator eontent of c = 1 conformal 2, field theories 

P SuranyitS 
Physikalisches Institut, University of Bonn, Nussalee 12, D-5300 Bonn, Federal Republic 
of Germany 

Received 26 October 1987, in final form 4 December 1987 

Abstract. It is shown that the operator content of frustrated sectors of c = 1 Z,, invariant 
conformal field theories (including the n +a limit, the XXYmodel) can be obtained from 
the field theory of a free massless boson with appropriate boundary conditions. It is also 
shown that, for frustrated boundary conditions, the requirement of modular invariance is 
substituted by definite transformation properties of the partition function under the modular 
group, which are satisfied by the partition function constructed in this letter. 

Cardy (1986a) has shown that the operator content of systems of the discrete series 
of c < 1 (where c is the conformal anomaly) two-dimensional conformal field theories 
(CFT) (Belavin et a1 1984, Friedan et al 1984) is fixed by modular invariance ( M I )  of 
the partition function. Furthermore, Itzykson and Zuber (1986), Capelli et a1 (1987) 
and Gepner (1987) were able to use MI to classify all c < 1 CFT of the discrete series. 

In subsequent work Cardy (1986b) and Zuber (1986) investigated the operator 
content of some 2, invariant c < 1 CFT with frustrated boundary conditions and/or 
partition functions restricted to sectors of definite values of the 2, charge. Again, 
using modular transformation properties these authors were able to confirm the operator 
content of various sectors of the Potts model, found earlier using numerical methods 
by von Gehlen and Rittenberg (1986). 

In the present letter the operator content of c = 1 2, invariant CFT is investigated 
in the case of frustrated boundary conditions. In a recent paper von Gehlen et al 
(1987) were able to find the operator content of these theories by using a combination 
of numerical and analytical tools. In the sectors with frustrated boundary conditions, 
defined below, they found an infinite series of primary fields (all with unit multiplicity) 
labelled by the unrestricted integers I, and Z 2 ,  having conformal dimensions 

- 
where Q = 0 , 1 , 2 , .  . . , n - 1 defines the frustration (or twist) in the boundary condition 
of the quantum chain and Q is the eigenvalue of the Z, charge operator 0. g is a 
positive constant, related to temperature. 0 is defined as follows: if Oi denotes 
operators belonging to the ith site of a quantum chain of length L, then we identify 

o,,, = zO0,Z-Q (2) 
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The ends of the line of critical points ?f the c = 1 2, system for n > 4 are located at 
g = 4/n and g = n/4, where the Q = Q = 0, I ,  = 0, l2 = 1 and I, = 1, 1, = 0 operators 
become marginal, respectively. The sel_f-duality point is g = 1. 

For periodic boundary conditions (Q = 0), and when one sums over Q, the operator 
content becomes 

exactly the dimensions of the Gaussian model, compactified on a circle of radius R, 
where R is identified as R = (2ng)”’ or R = (2/r1g)”~ (Di Francesco et a1 1987, 
Dijkgraaf et a1 1987). Multicritical points of the Gaussian model are at R =a and 
R = l/d in agreement with the second choice for R. This fact already indicates a 
relation between Z,, symmetric models and compactified Gaussian models. In what 
follows it will be shown that this relation runs substantially deeper. 

First, doubly frustrated partition functions for a quantum system of periodicity L ,  
( L ,  is complex) and boundary condition 0, are introduced as 

Z ( d 2 ,  0,; L2, L,)=Tr[I;6zexp(-HdlRe L,-iPdlImL2)] ( 5 )  

where H0l and Poi are the Hamiltonian and the momentum operator for the quantum 
chain, respectively. The physical requirement of symmetry for the exchange of boun- 
daries implies (the S generator of the modular group, corresponding to T +  - 1 1 ~ )  

Z ( Q 2 ,  0,; L 2 ,  L,)~Zdzdl(,)=Z-didz(-l/T)=SZ-Z’ ’ 0 2 ( T )  (6) 
where T is the conformal ratio, T = iL2/ L ,  . 

Let us construct a doubly frustrated partition function for a massless boson in the 
functional integral form, following the methods of Itzykson and Zuber (1986) and Di 
Francesco et a1 (1987). The action for the boson field @( z, 2 )  on a complex torus is 
written as 

s = 3 J dz dZ a,@ai@ 
47T ( 7 )  

where z = x + iy, z = x - iy and the scale factor ng was chosen appropriately. 
We split @(z, Z )  into two parts: 

@(z, 5 )  = 4(z,  3 + 4CdZ, 3 (8) 
such that 4 satisfies periodic boundary conditions and 
and frustrated boundary conditions: 

satisfies the Laplace equation 

4Cl(Z, 2)=2 .rr{ [ (ml+d , ln )k ,+ (m,+  62/n)k,lz+cc) (9) 
where k, and k, are complex wavenumbers, m ,  ,-m2, 6, , 6, and n are integers and 
cc means complex conjugation, i.e. k, + f ,  , k2 + k,, z + 2. The complex periods of the 
torus w ,  and w2 are related to k, and k2 as follows: 

k’ = -iw,/A k2  = iw,/A (10) 

Re( kioj) = 8;. (11) 

where A = Im(wz&) is the ‘area’ ofthe torus. The quantities k’ and wj satisfy the relation 
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I t  follows from (1 1) that 

~ A Z +  U , ,  i+ 6,) = +cl(z, 2) + 2 ~ ( m ,  + 6 , / n )  (12) 

and of course a similar equation is valid for @(z ,  Z) as well. If @ is regarded as a 
phase, then the field exp( i @ )  satisfies the required frustrated boundary conditions. 
The partition function built from the action (7) obviously satisfies symmetry condition 
(6). It has the following form: 

After straightforward calculations one obtains 

where T = rR+ iT1 and Z, is the partition function for the ground-state contribution: 

where ?r(q)  is the Dedekind function. 

1') gives 

Z Q I Q ~ = Z ~  E exp{-2TimQl/n - r I T [ m Z / g n + g n ( ~ , +  & n ) 2 ]  

Poisson summation over m, and m, (the corresponding integer variables are m and 

- -  
12 m 

- 2i.irmT,(12 + d,/ n ) } .  (16) 

Substituting m = 1,n - Q results in the expression 

in agreement with the operator content found by von Gehlen et a1 (1987) in the 
appropriate sectors. We can conclude that c = 1 Z,, CFT is equivalent to a field theory 
of massless frustrated bosons. 

The above results can be generalised to the n + 03 limit (keeping g = g n  fixed) as 
well. One only has to substitute o i / n  by si in (9), (12), (14) and (16), after which one 
substitutes m = -Q and 1, = 1 in (16) to arrive at the spectrum of primary fields, each 
with unit multiplicity, labelled by the single integer 1 :  

where, of course, Q is the Z, charge and 0 S . s  < 1 defines a continuous set of boundary 
conditions. This operator content is in exact agreement with that of the X X Y  model 
as obtained by von Gehlen et a1 (1987). 
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Notice that the doubly frustrated partion function has simple transformation proper- 
ties not only under generator S of the modular group, as given by (6), but the other 
generator, T, as well, corresponding to the transformation T + T + 1. Performing such 
a transformation on partition function (16) immediately gives 

where 0, + o2 is taken mod n. 
Equations (6) and (19) imply that the doubly frustrated partition function, instead 

of being invariant, transforms as a well defined (reducible) representation of the 
modular group (Dixon et a1 1986). It is easy to see that transformation property (19) 
of the partition function is a general feature in arbitrary CFT with 2, symmetry. This 
fact had already been recognised by Fradkin and Kadanoff (1980) and it is a con- 
sequence of that that the T --* T + 1 transformation corresponds to the circumnavigation 
of a toroidal or cylindrical system. On the one hand, this corresponds to a rotation 
by 27r and as such introduces a phase factor of 27rs = 27r(A - A), where s is the spin. 
On the other hand, in a sector of definite charge and boundary conditions it introduces 
a factor of 27rQi)ln as implied by (2) and (3). The equality of these two phases 
(mod 27r) and the definition of ZQlOz leads to (19). 

We conjecture that the modular covariance of 2'1'2 ((6) and (19)), together with 
the constraint that the coefficients in the character expansion are integers multiplied 
by the phases exp(27riQOln) fixes the possible 2, invariant theories at every value 
of c, much like modular invariance does for periodic boundary conditions. We were 
not able to find any other c = 1 2, invariant CFT with appropriate modular transforma- 
tion properties, than that given by (17). 

The author is indebted to V Rittenberg for stimulating discussions. The partial support 
of the University of Bonn and the US Department of Energy under contract no 
FG02-84-ER40153 is gratefully acknowledged. 
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